Limits

A limit describes the value a function approaches as the input approaches a particular point. Fundamental in calculus, derivatives, and integrals.

Key Concepts:

  1. Notation: limxaf(x)=L\lim_{x \to a} f(x) = Lx→alim​f(x)=L
  2. Properties:
    • limxa[f(x)±g(x)]=limf(x)±limg(x)\lim_{x \to a} [f(x) ± g(x)] = \lim f(x) ± \lim g(x)limx→a​[f(x)±g(x)]=limf(x)±limg(x)
    • limxa[f(x)g(x)]=limf(x)limg(x)\lim_{x \to a} [f(x)·g(x)] = \lim f(x) · \lim g(x)limx→a​[f(x)⋅g(x)]=limf(x)⋅limg(x)
    • limxa[f(x)/g(x)]=(limf(x))/(limg(x))\lim_{x \to a} [f(x)/g(x)] = (\lim f(x))/(\lim g(x))limx→a​[f(x)/g(x)]=(limf(x))/(limg(x)) if limg(x)0\lim g(x)≠0limg(x)=0
  3. Techniques:
    • Direct substitution
    • Factoring
    • Rationalization
  4. Applications: Calculus, continuity, derivatives, integration

Example Problem:limx2(x24)/(x2)=limx2(x2)(x+2)/(x2)=limx2x+2=4\lim_{x \to 2} (x^2 – 4)/(x-2) = \lim_{x \to 2} (x-2)(x+2)/(x-2) = \lim_{x \to 2} x+2 = 4x→2lim​(x2−4)/(x−2)=x→2lim​(x−2)(x+2)/(x−2)=x→2lim​x+2=4

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *