A limit describes the value a function approaches as the input approaches a particular point. Fundamental in calculus, derivatives, and integrals.
Key Concepts:
- Notation: x→alimf(x)=L
- Properties:
- limx→a[f(x)±g(x)]=limf(x)±limg(x)
- limx→a[f(x)⋅g(x)]=limf(x)⋅limg(x)
- limx→a[f(x)/g(x)]=(limf(x))/(limg(x)) if limg(x)=0
- Techniques:
- Direct substitution
- Factoring
- Rationalization
- Applications: Calculus, continuity, derivatives, integration
Example Problem:x→2lim(x2−4)/(x−2)=x→2lim(x−2)(x+2)/(x−2)=x→2limx+2=4