A matrix is a rectangular array of numbers arranged in rows and columns. Used in linear algebra, computer graphics, engineering, and statistics.
Key Concepts:
- Types of Matrices:
- Row, Column, Square, Zero, Identity, Diagonal, Scalar, Symmetric, Skew-symmetric
- Matrix Operations:
- Addition, Subtraction, Scalar Multiplication, Transpose
- Matrix Multiplication: AB = C (number of columns in A = number of rows in B)
- Determinant & Inverse:
- Determinant used to check invertibility
- Inverse A⁻¹ exists if det(A) ≠ 0
- Applications: Solving linear equations, transformations, network analysis
Example Problem:
A = [[1,2],[3,4]], B = [[5,6],[7,8]]
- A + B = [[6,8],[10,12]]
- AB = [[19,22],[43,50]]